Highly Efficient Probabilistic Finite Element Model Updating Using Intelligent Inference With Incomplete Modal Information
نویسندگان
چکیده
A highly efficient probabilistic framework of finite element model updating in the presence of measurement noise/uncertainty using intelligent inference is presented. This framework uses incomplete modal measurement information as input and is built upon the Bayesian inference approach. To alleviate the computational cost, Metropolis–Hastings Markov chain Monte Carlo (MH MCMC) is adopted to reduce the size of samples required for repeated finite element modal analyses. Since adopting such a sampling technique in Bayesian model updating usually yields a sparse posterior probability density function (PDF) over the reduced parametric space, Gaussian process (GP) is then incorporated in order to enrich analysis results that can lead to a comprehensive posterior PDF. The PDF obtained with densely distributed data points allows us to find the most optimal model parameters with high fidelity. To facilitate the entire model updating process with automation, the algorithm is implemented under ANSYS Parametric Design Language (APDL) in ANSYS environment. The effectiveness of the new framework is demonstrated via systematic case studies. [DOI: 10.1115/1.4033965]
منابع مشابه
FEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data
Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملDAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM
This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...
متن کاملFinite element model updating of a geared rotor system using particle swarm optimization for condition monitoring
In this paper, condition monitoring of a geared rotor system using finite element (FE) model updating and particle swarm optimization (PSO) method is onsidered. For this purpose, employing experimental data from the geared rotor system, an updated FE model is obtained. The geared rotor system under study consists of two shafts, four bearings, and two gears. To get the experimental data, iezoel...
متن کاملA Comparison Study on Various Finite Element Models of Riveted Lap Joint by the Use of Dynamic Model Updating
Till now, various models have been proposed in literature to simulate the behavior of riveted structures. In order to find the most accurate analytical method in modeling the dynamic behavior of riveted structures, a comparison study is performed on several of these models, in this research. For this purpose, experimental modal analysis tests are conducted on a riveted plate to verify the effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016